
BIOS vs. (U)EFI boot
WE ALL KNOW UEFI IS NEWER, AND THEREFORE, BETTER, RIGHT?

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
1

Thanks / Credits
▪Thanks to
▪ The OpenBSD Project

▪ For producing such awesome documentation

▪ Intel

▪ For open-sourcing part/most of the UEFI specs and implementation, and a little bit of
documentation

▪ Apple

▪ for freaking nothing at all: not following ANY specification, and not even properly
documenting what they are doing, either.

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
2

The contestants
▪BIOS boot
▪ Also including UEFI’s CSM (Compatibility Support Module)

▪ Boots in real mode, reads a few sectors, executes them

▪ Many, many implementations

▪ No standard, just “do what they did”

▪UEFI boot
▪ A complete pre-boot environment

▪ Multiple implementations

▪ One(-ish) official(-ish) standard

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
3

Abbreviated BIOS history
▪ “BIOS” term originates in CP/M circa 1975

▪Written in assembly by IBM for IBM PC
▪ Hard disk support added for IBM PC XT

▪ 80286 and 16-bit ISA support added for IBM PC AT
▪ First occurrence of “CMOS”: 50 bytes, battery-backed

▪ First occurrence of ATA support

▪ Other BIOS clones reverse-engineered during this era, principally by
Compaq, Phoenix, and AMI

▪ Supports add-in ROMs that extend BIOS functionality

▪More and more features added by many vendors,
including network boot & many others

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
4

Abbreviated UEFI history
▪ In the beginning, there was darkness…
▪ then EFI was created for Itanium, and OpenBoot for SPARCs and

PowerPC

▪Assembly programming, 16-bit real mode, and
pathological coupling to AT hardware made a bunch
of people decide that the BIOS sucked now

▪And they said “Lo, observe EFI, for it is good”
▪ … and then they messed it all up

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
5

The first WTF
▪UEFI machines are divided into classes:
▪ Class 0: Legacy BIOS. As in, no EFI functionality whatsoever

▪ Class 1: UEFI in CSM-only mode. Also no EFI functionality
whatsoever.

▪And it just gets clearer from there…

▪Recap:
▪ A Class 0 or 1 UEFI system is a pure BIOS/CSM-only system

▪ Or, a Class 0 or 1 UEFI system is not really a UEFI system at all

▪ Reminds me of recursive acronyms (e.g. GNU) but backwards

▪ “UEFI isn’t UEFI”?

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
6

Hang on, what’s the CSM?
▪Some UEFI implementations come with a “CSM”

▪“Compatibility Support Module”

▪That’s backwards compatibility, i.e. BIOS emulation!

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
7

Comparison - 1
Function BIOS / UEFI CSM UEFI

Hardware initialization Integrated into BIOS; if it’s not
supported, it doesn’t get
initialized.

Modular approach with “drivers”,
which can (in theory) be added
later by the end-user.

Bootloader Reads a few sectors from disk
at a fixed address and executes
them. Then gets out of the
way.

Loads an entire mini-OS that
selects a file, loads it, and executes
it.

Filesystem support Theoretically infinite, all it
cares about are the raw sectors
on disk.

FAT16/FAT32 only.
Other filesystems can theoretically
be supported by UEFI drivers.

Pre-boot Environment
and/or Shell

None. Entire miniature OS exists to load
bootable images. Arbitrary
executable images can be loaded,
including a UEFI Shell.

Processors /
Architectures

Re-written in assembler for
each CPU/arch.

Recompiled from C (usually) for
each CPU/arch.

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
8

Comparison - 2
Function BIOS / UEFI CSM UEFI

Disk sizes Depends on implementation.
Currently limited to <2TiB.

As long as the EFI partition is
within the first 8 ZiB (yes, really),
theoretically up to 256 ZiB.

Partition table Usually “MBR”-style for fixed
media, no partitions for
removable meia. Can be
customized.

GPT on fixed media, can be
customized for removable media.

Processor mode Real-mode (16-bit) only. Some
experimental versions did
really weird $#@! In 32-bit
mode.

32-bit protected mode, because
it’s a real (mini-)OS.
Only little-endian CPUs are
supported at this time.

Accessible memory 1MiB (real-mode) 4GiB (32-bit protected mode)

PCI/PCIe address
space

Inside 1MiB (real-mode), can
program high addresses but
not access them.

Can program and access addresses
inside 16EiB (64-bit long mode).

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
9

Comparison - 3
Function BIOS / UEFI CSM UEFI

Access services from
running OS

Requires thunking to 16-bit
real-mode.

Well-defined syscall interface from
32-bit or 64-bit protected modes.

Extendability More BIOS code written in
assembly, stored in ROM on
add-in cards.

Device driver compiled to EBC (EFI
Byte Code), stored in ROM on add-
in cards or stored as files in the EFI
Service Partition.

Firmware update Proprietary utility only. Fully-supported generic firmware
update via “UEFI Capsule”.

Cryptographically-
secure booting

Zip, zilch, nada. Except by
accident, sometimes. (Looking
at you, Fujitsu!)

Fully defined (and usually
supported) with or without a
hardware TPM chip.

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
10

Conclusion (or maybe Concussion)
▪ I’ve told you a bunch of little white lies,

much like your 6th grade science teacher,
and for the same reason:
▪ Reality is too complicated for a 15-minute presentation.

For more details, the rabbit hole into an alternate
universe starts here:

▪ https://en.wikipedia.org/wiki/BIOS

▪ https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

Image credit: Charlie Cottrell, https://xeyeti.com/, https://charliecottrell.com/

2021-Feb-09
FEBRUARY 2021 MUUG GENERAL MEETING:

BIOS VS. (U)EFI BOOT
11

https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://xeyeti.com/
https://charliecottrell.com/

