

Revision Control for Sysadmins

Presented at the
MUUG General Meeting on 2011-Sep-12

Adam Thompson, athompso@athompso.net

mailto:athompso@athompso.net

Who
 Designed for developers:

 Version control, which led to
 Software configuration management, which

led to
 Build management

 System administrators can also use:
 Version control (almost anywhere)
 SCM (complex situations)
 Build management (large-scale deployment)7

What – Version Control

 Designed to keep track of changes to a file
 Most allow multiple people to simultaneously

work on multiple versions of a file, then merge
their changes later

 For sysadmins, allows you to track changes to
config files

 Can be used to back up and synchronize files,
too

What – Software Config. Mgmt.

 More complex than revision control
 Manages entire filesets at a single time
 Includes path information
 Includes metadata
 Includes build-environment information
 Usually client-server, designed for teams

What – Build Management
 Evolution of SCM
 Includes intelligence about building the project

 Deploys the product, e.g. to a J2EE app
server

 Now includes "Application Lifecycle
Management"

 Team-oriented
 Covers workflow for sign-offs, approval,

testing, etc.
 Usually complex

 Supports "Continuous Integration"

Scope of presentation

 I'm only going to talk about Revision Control
software

 Everyone can find a use for it
 Easy (easier, anyway) to understand, set up

and use

Where

 ASCII configuration files
 Unicode and National Character Set files are

also generally supported
 Binary files are typically unsuitable, but are

generally supported without diff(1) capability
 /etc/*
 ~/.bashrc, et al.
 ~/Music

 Yes, really: use CVS/SVN/git for
synchronization!

When

 Manually, before and after each edit
 Manually, after testing
 Automated, from cron(8)

 Daily snapshots
 Automated, from startup scripts

 "Last-known-good" snapshots

Why

 What changed yesterday?
 What changed on 2010-Feb-06?
 Who changed it?

 This is more complicated to set up
 Easy rollback of changes
 Easier to test new changes and apply them

selectively

How - Origins

 SCCS – Source Code Control System
 First shipped with AT&T System III PWD in

1972, can still sometimes be found in SVR4-
derived OSes.

 File format still used in other products today
 RCS – Revision Control System

 Developed for BSD UNIX® in 1982, can be
found almost everywhere. Part of the base
system for many OSes.

 Command invocation syntax is still used by
many systems today

How – Evolution & Revolution

 CVS – Concurrent Version System
 Client-server version of RCS

 SVN – Subversion
 "CVS done right"

 git – completely New & Different!
 Written by Linux Torvalds to manage the

Linux kernel source

How - Others

 There are many other version control systems
 Many are commercial, many are cross-platform
 Some prominent systems:

 Mercurial
 Bazaar
 BitKeeper
 Visual SourceSafe
 Rational ClearCase

RCS

 The only one I'm going to explain is RCS
 Trivial to set up
 Easy to use
 Provides concepts necessary for

understanding CVS, SVN, etc. (but not git)

RCS - Repository

 RCS tracks one file at a time. Period.
 RCS creates a "revision group", contained in a

file named "filename,v".
 If a subdirectory called "RCS" exists, the ",v"

files will be placed inside it.
 Each ",v" file stores the latest version of the file

and all the reverse-deltas.
 Easy to recover some of the file even with a

damaged repository

RCS - Initialization

 Strongly recommend using an RCS/ directory
 The first rcs(1) command you run on a file will

initialize the revision group.
 Manually do so with "rcs -i"

 Avoids being prompted for the file description
during checkin/checkout

RCS – Basic Concept

 Check In / Check Out: kind of like a Coat Check
at a restaurant or concert

 Checked In:
 You don't have it
 You don't see it
 You have to check it back out to use it

 Checked Out:
 You're responsible for it

RCS - Locking

 A checked-out file can be locked or unlocked
 Locked (for modification): read/write
 Unlocked (for other use): read-only

 Leave files unlocked normally
 Only lock them when you need to make

changes
 Prevents accidental, untracked changes

RCS – Basic commands

 "ci -u <filename>"
 Checks IN a new version of the file, then

immediately checks OUT an unlocked copy.
 "co -l <filename>"

 Checks OUT a locked copy for modification

 That's all you need to know!

RCS - differences

OK, there's another command you need to
know...

 rcsdiff(1)

 Shows the differences between any two
revisions of the file

 With no options, diff(1)s the current
working file against the last-checked-in-
version. (i.e. "What have I changed so far
this time?")

RCS - Tags

 If you put the magic string "Id" and "Log"
into your file, RCS will automatically fill them in
with useful information

 See co(1), under KEYWORD SUBSTITUTION
for more details

Typical uses

 /etc/httpd/httpd.conf
 /etc/openldap/slapd.conf
 /etc/postfix/main.cf
 /etc/*, really...
 /usr/local/bin/my-custom-script.pl

Limitations

 RCS only handles one file at a time
 No notion of "projects"
 Revision history is (deliberately) vulnerable to

tampering
 Poor scalability

 I/O scales as O(N) with file size, # of
revisions, size of reverse-diffs

 I/O scales as O(N^2) with # of active
branches

 Single-user-writable model

Demo

 Maybe this will work...

Q&A

 I have to leave quickly tonight
 Several of our audience members are familiar

with version control systems (mostly CVS and
SVN, though)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

