RAID - On a Budget

MUUG – January 11, 2004 John Schulz

Overview

- Background
- Disk Technologies
- RAID Terminology
- RAID Technologies
- Examples
- Some Numbers

Background

- Based on my personal experience and mainly "non-scientific" findings
- Talk will focus on entry level options
- Two main goals:
 - Lowest cost per MB possible with redundancy we can live with
 - A bit better performance but still remembering cost objective

Disk Technologies

Disk Technologies - SCSI

- SCSI Small Computer System Interface
- Up to 320MB/sec, 10K, 15K RPM drives
- Up to 300GB drives available
- Low CPU load
- Optimized for multitasking applications
- Up to 16 devices on single wide (16 bit) bus
- Highest cost per MB

Disk Technologies - SCSI

- Connectors:
 - 68 pin with separate power, set SCSI ID on drive
 - 80 pin (SCA) connector with integrated power, set SCSI ID external to drive

Disk Technologies - SCSI

- Pricing:
 - 36GB 10K @\$220 (\$6.10/GB)
 - 73GB 10K @\$350 (\$4.80/GB)
 - 73GB 15k @ \$638 (\$8.70/GB)
 - 146GB 10K @ \$714 (\$4.90/GB)
 - 300GB 10K @ \$1,800 (\$6.00/GB)

Disk Technologies - PATA

- PATA Parallel Advanced Technology Attachment
 - What we all know as IDE
- Up to 133MB/sec
- Up to 400GB drives
- 2 drives per channel (Master/Slave)
- Issues with older BIOS support for drives over 128GB

Disk Technologies - SATA

- SATA Serial Advanced Technology Attachment
- Starting at 150 MB/sec
- 1 drive per channel
- Better performance than PATA
- Different Power connector on newer drives
- Specification supports hot plugging

Disk Technologies - SATA

- Replacing PATA
- Was more expensive than PATA but now about the same cost
- Pricing (7200 RPM):
 - 80GB @ \$85 (\$1.10/GB)
 - 250GB @ \$200 (\$0.80/GB)
 - 300GB @ \$262 (\$0.87/GB)
 - 400GB @ \$600 (\$1.50/GB)

Disk Technologies - SATA

RAID Terminology

RAID Terminology

- Redundant Array of Inexpensive disks or
- Redundant Array of Independent disks
- A way of storing the same data in different places (thus, redundantly) on multiple hard disks.
- Goals:
 - Fault tolerance
 - Since multiple disks increases the mean time between failure (MTBF), storing data redundantly also increases fault-tolerance.
 - Performance
 - By placing data on multiple disks, I/O operations can overlap in a balanced way, improving performance.

RAID Terminology — JBOD

- Data spanning over a number of disks to create a large volume
- A way to get around Partition size limits on W2K
 - Create a number of 2GB partitions
 - Set them to be dynamic
 - Create a Spanning Volume over the dynamic partitions

- RAID 0 Striping of data
- Data is broken into logical blocks and is striped across several drives
- No redundancy if 1 drive fails your data is gone
- Best Performance
- Not really RAID there is no redundancy

RAID 0 – data stripped over disks

- RAID 1 Mirroring of data
- A copy of the same data is recorded onto two or more drives
- A data read can round robin the drives, improving performance
- Good redundancy can survive a disk failure
- If drive fails, degraded performance good
- Under Software RAID 1, you can break mirrors to reduce backup downtime windows.

RAID 1 – data mirrored over disks

- RAID 5 Multiple-block striping with distributed parity
- Data and its parity are never stored on the same disk
- In the event that a disk fails, original data can be reconstructed using the parity information and the information on the remaining disks
- Good redundancy can survive 1 disk failure
- Add a hot spare to minimize degraded performance window

- Degraded performance can be bad time to recalculate missing data
- Degraded performance distinguishes better RAID 5 controllers
 - Good to test degraded performance when testing RAID systems
- RAID 5 Size: (number drives -2) x drive size
 - 1 hot spare
 - Lose 1 drive of space for parity (actually a bit more)

RAID 5 – data and parity spread over disks

RAID Terminology - RAID 10 and 01

- RAID 10: Mirroring and striping
- RAID 01: Striping then mirroring
- Info (using at least 4 drives):
 - Array Capacity: (Size of Smallest Drive) * (Number of Drives) / 2.
 - Storage Efficiency: If all drives are the same size, 50%.
 - Fault Tolerance: Very good for RAID 01; excellent for RAID 10 (you could lose up to 3 drives).
 - Availability: Very good for RAID 01; excellent for RAID 10.
 - Degradation and Rebuilding: Relatively little for RAID 10; can be more substantial for RAID 01.

RAID Technologies

RAID Technologies - Software

- The O/S creates and maintains RAID devices
- Any data copying/calculation performed by the CPU
- Linux: supports RAID 0, 1, 5
 - fd file system and raid utilities
 - Logical volume management
 - Can be configured at install time with Kickstart (Redhat)
- Windows
 - W2K Pro: striping and spanning
 - W2K Server adds RAID 1 and 5

RAID Technologies - Software

- On-board controller:
 - SATA ICH5R chipset
 - Adaptec RAIDHost 39320D-R
- Have BIOS support from the chipset for booting
 - After that all of the RAID functionality is handled via the host OS.

- Utilizes a Hardware based controller card with embedded RAID functionality
 - O/S works with Hardware card/chipset
 - Hardware card interacts with physical disks
 - Lower end boards have only RAID 0 and RAID 1
- It's all about the drivers
 - O/S must have drivers/software to support the card.
 - Installing on RAID boot partition usually more difficult than creating a data partition

- Card based:
 - PCI based card with drive connectors
 - Drives can either be in the system or external to the system
- External storage for a Host based controller a step toward fully external RAID.

- SCSI PCI card:
 - 1 or 2 channel SCSI controller
 - Internal or external SCSI disks
 - Less expensive that fully external system
 - Requires space and power if internal
- SCSI Zero channel card:
 - SCSI controller plugs into motherboard
 - Card adds RAID functionality to existing on-board SCSI controller

Adaptec 2200 - On-board hardware RAID

Adaptec 2015S – Zero channel RAID card

- SATA PCI card:
 - 2, 4, 8, 16 channel cards available
 - Adaptec has a kit with 4 channel controller and 4 drive enclosure
- Various manufactures make SATA drive enclosures
 - Cremax (ICY-Dock)
 - Startech
 - Storcase

Adaptec 2410 Kit – 4 SATA drives in 3 bays

Cremax MB235 SPF – 3 drives in 2 bays

StarTech SATABAY3 - 3 Drive Serial ATA Backplane

RAID Technologies - External Controller

- System and O/S independent
- External interface is SCSI
- Available from many vendors
- General structure:
 - 1 or more external SCSI channels
 - Create a RAID 5 Disk array with Hot Spares
 - Create a number of logical volumes
 - Map each logical volume to a SCSI address using SCSI ID and LUN
- Watch for:
 - For maximum supported file system size
 - Number of internal channels

RAID Technologies - External Controller

- Storcase:
 - SCSI-SCSI, SCSI-FC, and SCSI-SATA
 - Serial User interface for management
 - SCSI:
 - 9 or 14 bay
 - Dual channel SCSI-SCSI enclosure
 - Dual or Single RAID controller
 - Uses 80 Pin drives SCSI drives
 - SATA:
 - 12+ bays
 - Dual channel SCSI-SATA enclosure
 - Dedicated SATA channel per disk

Storcase dual channel with 9 SCSI drives

Storcase with 12 SATA drives

- Nexsan
 - 14 drive bays
 - PATA drives
 - Dedicated PATA channel per disk
 - GUI windows based tools
 - On the net (web based interface)

Nexsan ATAboy2

Nexsan ATAboy2 - back

Examples

- Basic setup and costs
- Various cost/GB
- Usually trade off between reliability and cost

Example 1: Software RAID

- SuperMicro 5013C-T 1U system @ \$1,200
 - 2 x hotswap SATA bays
 - On-board ICH5R
 - 2 x 300GB SATA drives @ \$262
 - 10GB for O/S, 290GB for RAID 1 storage
 - \$1724/290GB= \$5.94/GB

Example 2: SATA Host-based card

- Redhat 7.3 Box with internal SATA
 - 1 x Adaptec 2810SA SATA card \$699.00
 - 3 x Cremax MB235 3 bay 4 drive SATA enclosure \$225
 - 8 x Maxtor 300GB SATA drives (one hot spare) @ \$262
 - Total RAID5: $6 \times 300 = approx 1.8TB$
 - Cost/MB: \$3695/1800GB = \$2.05/GB
 - Add cost of system (\$1500)
 - Cost/MB: \$5195/1800GB = \$2.89/GB

Example 2: SATA Host-based card

4U PC with 8 SATA drives

Example 3: SCSI Host-based

- Adaptec 2200S dual channel controller @ \$800
- Internal:
 - 9 x 73GB SCSI drives @ \$350
 - Total: \$3,950/511GB = \$7.70/GB
- External:
 - 9 x 73GB SCSI drives @ \$350
 - Storcase 14 bay SCSI enclosure S10A169 \$5,100
 - Total: \$9,050/511GB = \$17.71/GB

Example of other Host-based

- Older cards still do the job:
 - Adaptec 3000 series for SCSI
 - Adaptec 2400 for up to 4 PATA drives

Example 4: SATA External

- Storcase:
 - Dual channel SCSI out
 - 12 x Maxtor 300GB SATA (one hot spare) @ \$262
 - Storcase 12 bay SCSI-SATA enclosure \$4500
 - Total RAID5: $10 \times 300GB = approx 3TB$
 - Cost/MB: \$7,644 / 3000GB = \$2.50/GB

Example 5: PATA External

- Nexsan:
 - Unit cost: \$12,000
 - Dual channel SCSI out
 - 8 x 120GB PATA drives
 - 3 year warranty
 - Total RAID5: $6 \times 120 = approx 720GB$
 - Cost/MB: \$12,000 / 720GB = \$16.66/GB

Example 6: SCSI External - Storcase

- 9 bay dual channel 320MB/sec SCSI-SCSI enclosure @ \$4,000
- Single RAID controller @ \$4,600
- Disks:
 - 9 x 73GB-10k @ \$350 = \$11,750/511GB = \$23/GB or
 - 9 x 73GB-15k @ \$638 = \$14,342/511GB = \$28/GB or
 - 9 x 146GB-10K @ \$714 = \$15,026/1022GB = \$14.70/GB

Example Summary - Cost/GB

Some Numbers

- bonnie disk benchmark
 - Benchmark which measures the performance of Unix file system operations
 - Data collected for a wide variety of systems
- Factors:
 - CPU speed
 - Controller
 - Cables
 - Disks
 - Number of disks

Some Numbers - What's bonnie?

- What bonnie Does:
 - bonnie performs a series of tests on a file of known size.
 - For each test, bonnie reports the bytes processed per elapsed second, per CPU second, and the % CPU usage (user and system).
 - In each case, an attempt is made to keep optimizers from noticing it's all bogus.
 - The idea is to make sure that these are real transfers between user space and the physical disk.

Some Numbers What's bonnie?

The Tests are:

- Sequential Output
 - Per-Character
 - Block
 - Rewrite
- Sequential Input
 - Per-Character
 - Block
- Random Seeks

Some Numbers - Seq Output Per Char

Some Numbers - Seq Output Per Blk

Some Numbers - Seq Input Per Char

Some Numbers - Seq Input Per Blk

Some Numbers - Random Seeks


```
Example 1: Software RAID
     -----Sequential Output----- ---Sequential Input-- --Random--
     -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2000 21277 76.2 33484 7.6 15322 2.6 24921 84.9 58104 4.6 148.0
Example 2: Adaptec SATA, 7 drives RAID5:
     -----Sequential Output----- --- Sequential Input-- -- Random--
     -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2000 11972 99.5 33640 55.0 17119 20.1 10114 86.7 57039 27.7 290.0 4.4
Example 4: Storcase Sata 11 drives RAID5:
     -----Sequential Output----- --- Sequential Input-- -- Random--
     -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2000 9216 99.3 46471 98.5 26556 96.9 11265 99.0 49684 84.6 28.9 9.1
Example 5: Nexsan 13 drives RAID5:
     -----Sequential Output----- --- Sequential Input-- -- Random--
     -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2000 31186 96.8 64441 36.3 21617 20.3 27146 91.5 66694 29.5 92.8 3.6
```

```
Adaptec 2400, 4 drives RAID5, Linux
     -----Sequential Output----- --- Sequential Input-- -- Random--
     -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2000 8637 99.3 13724 23.3 6857 7.7 5698 68.2 15206 8.6 151.8 2.5
Single 10K SCSI drive, Linux:
     -----Sequential Output----- ---Sequential Input-- --Random--
     -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2000 25703 93.6 53043 35.6 21364 10.2 20427 82.6 85130 12.7 373.3 1.2
2 x 10K SCSI drive, RAID 1, Linux
Adaptec On-board AIC-7899 with 2005S zero channel controller
     -----Sequential Output----- --- Sequential Input-- -- Random--
     -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2000 25141 91.9 53438 35.5 20786 10.0 26091 86.2 91620 22.5 479.7 3.5
```

```
2 x 15K SCSI disks, Software RAIDO, 2 x LSI 320 bus, Solaris:
    -----Sequential Output----- --- Sequential Input-- -- Random--
    -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2000 25744 71.8 119891 69.0 17707 17.0 32032 98.5 196138 80.7 357.3 5.8
2 x 15k disks, RAID1, 2 x LSI 320 bus, Solaris:
    -----Sequential Output----- ---Sequential Input-- --Random--
    -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2000 35067 96.9 63318 34.3 18055 17.5 31909 97.5 137544 53.2 345.5 4.8
2 x 15K SCSI drives, Storcase hardware RAID1, Solaris
    -----Sequential Output----- --- Sequential Input-- -- Random--
    -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --Seeks---
 MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU
2047 35341 85.5 37488 20.3 17200 14.1 28931 75.3 42140 16.2 44.0 2.5
```

RAID - On a Budget

- References
 - storcase.com
 - adaptec.com
 - cremax.com
 - nexsan.com
 - textuality.com/bonnie/

RAID - On a Budget

Questions?