
February 1998 Volume 10, Number 6

1

$2.50 MUUGlines
This Month’s Meeting
Protecting Data Transfer in an Insecure
Environment

This month’s presentation is on how to protect your informa-
tion as it is being transmitted across a network using Pretty
Good Privacy(PGP) version 5.0 and Secure Shell(ssh) version
1.2.22. We will be looking at some of the current weaknesses
of network security and how PGP and ssh address these
problems. In addition, some of the new features of PGP v5.0
will be presented.

For door prizes this month, we have a copy of Red Hat
5.0, Red Hat t-shirts (size XL), Red Hat frisbees, and Red Hat
bumper stickers!

Our meeting this month is Tuesday, the 10th of February.
We meet at IBM Canada’s offices in the TD Centre, at the
corner of Portage and Main. We’ll gather in the lobby on the
main floor – please try to be there by about 7:15 PM. Steve
Moffat will then take us up to the meeting room just before the
meeting starts at 7:30. Don’t be late, or you may not get in.

Parking is available either in the parkade behind the TD
building, off Albert Street, or in the ground level lot just north
of the TD building. Entrance to the lot is from Albert Street,
behind the parkade. Either way, parking is a $1.25 flat rate for
the evening. You purchase your ticket from a dispenser, so
make sure you’ve got exact change – a loonie and a quarter,
or 5 quarters.

During Last Month’s Meeting...
Contributed by Doug Shewfelt
At our January meeting, Brian Pauls of the City of Winnipeg
gave a presentation on TCP/IP addressing and routing. He
started with a brief summary of networking concepts and
history. He then described TCP/IP addresses and subnet
masking, and finished off with a discussion of routing and
common routing protocols.

The TCP/IP address has two parts: the network compo-
nent and the host component. Unlike many protocol addresses
the dividing line between the two parts is movable. This
allows various classes, such as a small number of networks
with a large number of hosts, or a large number of networks
with a small number of hosts.

The TCP/IP address it generally shown as four numbers
called “octets” separated by periods. Each octet has a range
from 0 to 255. A Class A address uses the first octet for the
network number and the last three for the host number,

allowing for over 16 million hosts per network. The first octet
of a Class A address must be in the range of 1 to 126.

The first octet of a Class B address is between 128 and
191. It uses two octets for the network component, and two
octets for the host component. This allows up to 65,534 hosts
per network.

The first octet of a Class C address is between 192 and
223. It uses the first three octets for the network component,
and the last octet for the host component. This allows up to 254
hosts per network.

There are other less common classes. Class D is used for
multicast networks, while Class E addresses are marked as
experimental.

Sometimes it makes sense to take a larger network and
subdivide it into a number of smaller networks. This is done
by taking bits from the host component of the IP address, and
interpreting them as bits belonging to the network component.

For example, the default subnet mask of a Class C address
is 255.255.255.0. This means that the first three octets are
used for a network address, and the last one is used for a host
address, which would allow for 254 hosts per network.

However, we could use the mask 255.255.255.224. If we
write this in binary we would get 11111111. 11111111.
11111111. 11100000.

Note the last octet. There are three 1s, followed by five 0s.
This means that when we subnet, we will interpret three bits
of the host component as part of the network component. That
will divide the network that we have into 8 subnetworks of 30
hosts each. Brian offered this example:

Subnet Hosts
200.130.45.0 200.130.45.1 to 200.130.45.30
200.130.45.32 200.130.45.33 to 200.130.45.62
200.130.45.64 200.130.45.65 to 200.130.45.94
200.130.45.96 200.130.45.97 to 200.130.45.126
200.130.45.128 200.130.45.129 to 200.130.45.158
200.130.45.160 200.130.45.161 to 200.130.45.190
200.130.45.192 200.130.45.193 to 200.130.45.222
200.130.45.224 200.130.45.225 to 200.130.45.254

A host number of 0 is reserved for the address of the
network, while a host number whose bits are all 1s is the
network broadcast address.

Some routers also support variable length subnet masks,
so that you can divide your network into several different-

Volume10, Number 6 February 1998

2

sized subnetworks.

Computers that do connect with
the Internet must use IP addresses that
are unique across the entire Internet.
However, an organization may have a
number of computers that will only com-
municate on their internal network, and
these computers do not need a regis-
tered IP address. Therefore, some ranges
of addresses have been reserved as un-
registered IP addresses. Packets sent to
these destinations are dropped from the
Internet backbone. The organization can
use these addresses freely without wor-
rying about collisions with other sites
using the same address.

The ranges for unregistered ad-
dresses are:
Class A 10.x.x.x
Class B 172.16.0.0 to 172.31.0.0
Class C 192.168.1.x to

192.168.254.x

Brian then provided an overview
of routing. He explained how packets of
data are encapsulated and passed be-
tween routers. He described how there
are different approaches to routing —
for example a router can know only
about its own network and the networks
immediately around it, or it can have
knowledge of the configuration of a
broader part of the network. He de-
scribed a number of common protocols
in use, and the advantages and disad-
vantages of each.

He ended his presentation with a
description of some common diagnos-
tic tools.

More 2¢ Tips!
Send Linux Tips and Tricks to gazette@ssc.com

Followup to PostScript and
VC Key Sequences
(LG#23)
From: Ivan Griffin ivan.griffin@ul.ie

I just wanted to point out that some of
my 2cent tips in Issue 23 of the Linux
Gazettte (December, 1997) were a little
funky in their appearance.

While it doesn’t really matter at all
with the VC key sequences, it may af-
fect someone’s understanding of the
bad (imho) PostScript generated by the
Microsoft PS driver.

In this, the PostScript should have
been pre-formatted using the appropri-
ate HTML tags. Basically, the line :

30000 VM?
is on its own, and not part of any other
line. All that you have to do to remove
this artificial restriction on viewing/con-
verting the PostScript with ghostscript
is to delete this line.

On another note, someone asked
me where those key sequences come
from. If you check either keyboard.c or
keyb_m68k.c, you will find an array of
function pointers called spec_fn_table[].

This array contains a list of func-
tions to execute when certain key com-
binations are received... The key com-
binations listed in the 2cent tips execute
the functions show_state(),
show_mem() and show_regs()

You will find the source for func-
tion show_state() in /usr/src/linux/ker-
nel/sched.c; show_mem() is in /usr/src/
linux/arch/i386/mm/init.c; and
show_regs() is in /usr/src/linux/arch/
i386/kernel/process.c

PostScript $0.02 follow-up
From: Kyle Ferrio kbf@phy.duke.edu

In the December issue of LG, Ivan Grif-
fin suggests using pstops from the psutils
package to accomplish two-up printing,
gives a helpful example for A4 paper,
and points out that the command line
needs to be tweaked for US letter. If
you’re using US letter paper, then psnup
(also part of psutils) already does the

job nicely with no uncomfortable think-
ing. It might even work for A4, but I
haven’t checked. The psutils are gener-
ally very handy, so folks might want to
have a look. An RPM is available in /
contrib at ftp.redhat.com, for instance.
Be advised that there seem to be at least
two very distinct packages called psutils
floating around Net-space.

Yet another cheap tip.
From: Gary Johnson gjohnson@
season.com

Sorry if it has been mentioned before, I
thought I would throw it in the Gazette
pile just in case it hasn’t...

Cat-proof keyboard.

Switching to an unused virtual con-
sole is a quick way to blank the screen
and disable the keyboard. To make one
available try
setterm -clear /dev/tty12

on startup. ALT F12 flips to it, or
ALT CTRL F12 from X. Because there
(probably) isn’t a login running on that
VC it doesn’t do much, which can be a
feature. A smart cat may still luck into a
troublesome key sequence.

2 cent tip - dosemu
From: Joey Hess joey@kitenet.net

I occasionally use dosemu, mainly to
run some games I can’t live without, but
I hate seeing the C:\ prompt. So I thought
it’d be nice if there were a way to tell
dosemu what dos command to run, and
it would run that command on bootup.
Here’s a perl script that does just that.
Read the comments at the top, they
explain some changes you need to make
on the dos side of this. The basic idea is,
make a ~/dos_do.bat file, that contains
the command you want to run, and use
lredir to let dosemu see your home di-
rectory. Then run the batch file.

#!/usr/bin/perl
#

February 1998 Volume 10, Number 6

3

This runs dosemu.
#
Any parameters specified
after “—” will be passed in to
dosemu to be
run as dos commands.
#
Setup: add to autoexec.emu:
lredir.com h:
linux\fs\${home}
if exist h:\dos_do.bat call
h:\dos_do.bat
#
GPL Copyright 1996, 1997 Joey
Hess

Split params into dosemu
parameters and dos commands.
while ($a=shift @ARGV) {

if ($a=~m/—/ ne undef) {
last }

$dosemu_command_line.=”$a “;
}
$dos_command_line=join(‘
‘,@ARGV);
$dos_command_line=~s/;/\r\n/g;

open (OUT,”$ENV{HOME}/
dos_do.bat”) || exit print
“$ENV{HOME}/dos_do.bat:
$!”;
if ($dos_command_line) {

print OUT
“$dos_command_line\r\n”; # note
dos CR LF

print OUT “exitemu\r\n”;
}
close OUT;
system “/usr/bin/dos
$dosemu_command_line”;
unlink “$ENV{HOME}/dos_do.bat”;

Re: 2c Tip “Finding What
You Want with find”
From: Mike Neuhauser mike@
gams.co.at

Jon Rabone, jkr@camcon.co.uk, wrote
in the December 97 issue of LG:
> In the October 97 issue, Dave Nelson
suggests using
> find . -type f -exec grep “string” /dev/
null {} \;
> to persuade grep to print the filenames
that it finds the search
> expression in. This starts up a grep for
each file, however. A
> shorter and more efficient way of
doing it uses backticks:
>

> grep “string” `find . -type f`
>
> Note however, that if the find matches
a large number of files you
> may exceed a command line buffer in
the shell and cause it to complain.

To avoid an overflow of the com-
mand line buffer use:

find . -type f | xargs grep “string”

This may give problems if
filenames contain white space (e.g. touch
“test file”) — to avoid use:

find . -type f -print0 | xargs -0 grep
“string”

Note also that find doesn’t follow
symbolic links to directories per de-
fault. Using find with the option -follow
does the trick (find . -follow ...).

Re: Finding What You
Want with find
From: Dale K. Hawkins dhawkins@
mines.edu

find . -type f -exec grep “string” /dev/
null {} \;

That is how I used to run things too,
but a friend showed me the xargs pro-
gram. Very nice. So one could turn the
above statement to something like:

find . -type f | xargs fgrep “string”
/dev/null

Again, the /dev/null will force the
name of the file to be printed (in the
unlikely case that find only found one
file name). This has the benefit of not
invoking a new grep process each time.

But for a really slick (and much
faster search) try this:

locate $PWD | grep “^$PWD”
|xargs fgrep “string” /dev/null

This assumes that your locate data-
base is current for the directory to be
searched. It does have a problem though:
it tries to grep everything, including
directories!

locate $PWD | grep “^$PWD”
|xargs -ifilename sh -c \

 “if [-f filename]; then echo
filename; fi “ | \

 xargs fgrep “string” /dev/null
And as an exercise for the reader:

Take a look at lesspipe.sh (if it is in-
stalled; download it otherwise!) See if
you can create a shell script called
supercat (or something) which preproc-
esses the input to prevent grep’ing bi-
nary files, etc.

You gotta love UNIX and espe-
cially Linux!

-Dale K. Hawkins

Finding What You Want
with find Part III
From: Axel Dietrich Axel.Dietrich@
neuroinformatik.ruhr-uni-bochum.de
>In the October 97 issue, Dave Nelson
suggests using
> find . -type f -exec grep “string” /dev/
null {} \;
>to persuade grep to print the filenames
that it finds the search
>expression in.

Besides Jon Rabone’s “shorter and
more efficient” version in the Decem-
ber 97 issue using backticks:
grep “string” `find . -type f`

the following variant can be used
without the danger of exceeding a com-
mand line buffer limit:
find . -type f -exec grep -l
“string” {} \;

The “-l” switch tells grep to show
the name of the file in which “string”
was found. To limit such a search on
selected files I use a combination of the
-type and -name switches.
find . \(-type f -name
“*\.html” \) -exec grep -l
“string” {} \;

This searches in all files with the
suffix “html” for the string “string” and
outputs the name(s) of the file(s) in
which “string” was found.

Axel

Volume10, Number 6 February 1998

4

More on finding
From: Alexander Larsson alla@
lysator.liu.se
In the December 97 issue Jon Rabone
wrote: This starts up a grep for each file,
however. A shorter and more efficient
way of doing it uses backticks:

grep “string” `find . -type f`

Note however, that if the find
matches a large number of files you
may exceed a command line buffer in
the shell and cause it to complain. A
better way would be to use:

find . -type f | xargs grep “string”
which starts up a new grep everytime
the command line buffer is full.

Another way to find
From: rchandra@letter.com

In an article in the LG, it was suggested
that, in order to cut down on having to
fork(2)/exec(2) for each grep when
you’re searching through a tree of files,
you use the shell’s capability of com-
mand substitution (for the file names
paramaters to the grep command) with
“backquotes,” “grave accents,”
“backticks,” etc. as they are commonly
called (“`”). In that little tidbit, it is
noted that it has the limitation of the
system-wide imposed limit on number
of arguments, and I possibly think there
might be a length issue as well (too
many total bytes). Enter xargs(1).

The job of the xargs command is to
read its stdin and use the resultant strings
as arguments to some command prefix
(such as “grep -n somestring”), much
like backquotes work. However, the
xargs program is “aware of” the limita-
tions imposed by the system, and will
run the command prefix as many times
as necessary to exhaust the list provided
on stdin, while on each run giving the
command only the maximum number
of arguments and the maximum byte
count (?) that an exec(2) call can han-
dle. Thus, provided that the program
named in the command prefix follows

the UNIX program protocol of iterating
over its non-option arguments, one can
search one, hundreds, thousands, even
millions of files with a line like:

find / -type f -print | xargs grep -n
‘where is that string?’

Cryptographic System
From:Emil Laurentiu emil@
interlog.com
I would appreciate a lot an answer even
a short one like 'no' :) I am (desper-
ately) searching a cryptographic sys-
tem for my Linux box. I am already
using TCFS but I'm not very happy with
it for several reasons: it is slow, I expe-
rienced some data loss, must use the
login password, cannot share encypted
files with other users, NFS - increses
security riscs. And the people in Italy
seemed to have stoped work on this
project (latest version is dated february).

February doesn't seem that old. Are
you sure you're using the latest TCFS (v
2.0.1)? You can find that at: http://
pegaso.globenet.it (which is a web form
leading to an HTTPS page -- so use and
SSL capable browser to get there).

If you find it slow than any other
decent encryption is also likely to be too
slow for you. You could look at http://
www.replay.com (in the Netherlands).
This has the best collection of cryptog-
raphy software I've seen anywhere.

The two fs level alternatives to
TCFS are CFS (Matt Blaze's work, on
which TCFS was based) and userfs
(which support a few different user-
level filesystem types including an ex-
perimental cryptographic one.

O'REILLY RELEASES THE
SECOND EDITION OF TCP/
IP NETWORK
ADMINISTRATION

SEBASTOPOL, CA-TCP/IP, the pre-
eminent communications protocol for

linking together diverse computer sys-
tems, is growing in importance as the
Internet and other computer networks
become more central to business, gov-
ernment, and education. O'Reilly &
Associates has released the 2nd Edition
of their classic "TCP/IP Network Ad-
ministration," which gives system ad-
ministrators the latest information on
TCP/IP, as well as thorough coverage
of configuration, security, and trouble-
shooting.

"TCP/IP Network Administration,
2nd ed." is a complete guide to setting
up and running a TCP/IP network. It
starts with the fundamentals: what the
protocols do and how they work, how
addresses and routing are used to move
data through the network, and how to
set up your network connection. Be-
yond basic setup, this new second edi-
tion discusses the Internet routing
protocols and provides a tutorial on
how to configure important network
services. It also includes a new section
on Linux in addition to BSD and Sys-
tem V TCP/IP implementations.

As a User Group member, you are
entitled to a 20% discount on all O'Reilly
books and software when you order
directly from us (800-998-9938) and
mention your user group’s code [avail-
able to MUUG members from any board
member – Ed.] when placing your or-
der. O'Reilly's Catalog and Resource
Center on the Web is at: http://
www.oreilly.com/

Contact Information
To contact the MUUG board for mem-
bership information or anything else,
send e-mail to board@muug.mb.ca. We
have a Web presence as well, at http://
www.muug.mb.ca/, where you can find
all kinds of information, including de-
tails of upcoming and past meetings and
presentations and references related to
them. E-mail the editor at
editor@muug.mb.ca.

